10. Given $\mathrm{FH}=41$ and $\mathrm{UH}=9 x-4$, find x. solve

11. Given $\mathrm{m} \angle \mathrm{KYN}=36, \mathrm{~m} \angle \mathrm{KSY}=74$, and $\mathrm{m} \angle \mathrm{SYK}=11 x+26$,

12. Given: ABCD is a rectangle, M is the midpoint of $\overline{A B}$ Prove: $\overline{D M} \cong \overline{C M}$

Statement:	Reason:
1. Rectangle $A B C D$ 2. M is the midpoint of $\overline{A B}$ 3. $\overline{A M} \cong$ \qquad 4. $\overline{D A} \cong$ \qquad 5. $\angle A=$ \qquad $=90^{\circ}$ 6. 7. $\overline{D M} \cong \overline{C M}$	1. Given 2. Given 3. 4. 5. 6. SAS 7.

13. Given: $A B C D$ is a parallelogram

Prove: $\triangle D A C \cong \triangle B C A$

Statement:	Reason:
1. Parallelogram ABCD	1. Given
2. $\angle \mathrm{D} \cong$	2.
3. $\angle \mathrm{BAC} \cong$	3.
4.	4. Reflexive Property
5. $\triangle \mathrm{DAC} \cong \triangle \mathrm{BCA}$	5.

\qquad

Math 3 Unit 5: Reasoning With Geometry

March 19 - Geometric properties HW: worksheet 5.1	March 20 - Proofs with lines and triangles HW: worksheet 5.2	March 21 - Properties of parallelograms HW: worksheet 5.3	March 22 - Proofs with parallelograms HW: worksheet 5.4	March 23 - Properties of quadrilaterals HW: worksheet 5.5
March 26	March 27	March 28	March 29	March 30
- Proofs with quadrilaterals HW: worksheet 5.6	- Review for test HW: finish review	- TEST!!	- Piecewise functions (Yes, Myers will be teaching on this day. Are you really surprised?)	FRMMHATBD 6920 SPIMABREM

5.1-Geometric Properties

Name each of the following types of angles. Then, state whether they are congruent or supplementary.

For \# $5-9, a| | b$ and p is a transversal. Fill in the blanks describing the angle relationships with regard to $\angle 3$.
5. $\angle 3$ and \angle \qquad are a linear pair
6. $\angle 3$ and \angle \qquad are vertical angles
7. $\angle 3$ and \angle \qquad are corresponding angles
8. $\angle 3$ and \angle \qquad are alternate interior angles
9. $\angle 3$ and \angle \qquad are consecutive interior angles
10. In the accompanying diagram, line ℓ is parallel to line m, and line t is a transversal. Which must be a true statement?
A $m \angle 1+m \angle 4=180$
B $m \angle 3+m \angle 6=180$
C $m \angle 1+m \angle 8=180$
$m \angle 3+m \angle 6=180$
$D \quad m \angle 2+m \angle 5=180$

5.6 - Proofs with Quadrilaterals

For \# 1-5, use the given notation to identify the type of quadrilateral shown. Explain how you know.
1.

2.

3.

4.

5.

6.

6. Given $\mathrm{KM}=22$ and $\mathrm{JL}=5 x+2$, solve for x .

7. Given that LMNO is a rectangle, find the length of LN.

8. Solve for x.

9. Find $\angle M$.

For questions \#7-9, find x given that each figure is a rectangle.
7. $\mathrm{KM}=5 x-2$ and $\mathrm{JL}=2 x+16$

9. $A C=38, D R=2 x$ and $B R=4 x+2$

For questions \#10-14, find the angle measures given that each figure is a rhombus.
10. Find the measure of $\angle A B D$ and $\angle A C D$

$$
\angle D B C=44 \text { and } \angle A C B=46
$$

For \#11-14, use the figure to the right.
11. Find the $m \angle 1$.
12. Find the $\mathrm{m} \angle 2$.
13. Find the $\mathrm{m} \angle 3$.
14. Find the $m \angle 4$.

For \#11-14, find the value of x in each question given that lines I and m are parallel. Then find the measure of each angle.

11. $\mathrm{m} \angle \mathrm{C}=3 x-10$
$\mathrm{m} \angle \mathrm{F}=x+70$
12. $\mathrm{m} \angle \mathrm{D}=x+27$
$\mathrm{m} \angle \mathrm{F}=2 x-39$
13. $\mathrm{m} \angle \mathrm{B}=2(x+40)$
$\mathrm{m} \angle \mathrm{G}=5 x+44$
14. $\mathrm{m} \angle \mathrm{E}=7 x+30$
$\mathrm{m} \angle \mathrm{G}=3 x+10$
15. Given that $\mathrm{m} \angle 4=3 x+10$ and $\mathrm{m} \angle 12=2 x+30$, find the value of $\mathrm{x}, \mathrm{m} \angle 4$, and $\mathrm{m} \angle 10$.

5.2 - Proofs with Lines and

1. Given: a || b, c \| d

Prove: $\angle 7 \cong \angle 4$

Triangles

2. Given: a || b, c || d

Prove: $\angle 1 \cong \angle 13$

3. Given: $\mathrm{RS} \cong \mathrm{RU}, \mathrm{TS} \cong \mathrm{TU}$, $\angle \mathrm{S} \cong \angle \mathrm{U}, \angle \mathrm{SRT} \cong \angle \mathrm{URT}$
Prove: $\triangle R S T \cong \triangle R U T$

4. Given: $R S \cong U T, R T \cong S U$

Prove: $\triangle R S T \cong \triangle U T S$

5.5-Quadrilateral Properties

For \#1 - 2, find the measure of each missing angle.
1.

2.

For questions \#3-4, find x and the length of EF.
3.

4.

For questions \#5-6, find the measures of the numbered angles in each kite.
5.

6.

11. Solve for x.

12. Given $\mathrm{KU}=7 x-4$ and $\mathrm{KM}=188$, find x .

13. Given: ABCD is a parallelogram, $\overline{D E} \cong \overline{F B}$

Prove: $\angle 1 \cong \angle 2$

Statement:	Reason:
1. Parallelogram ABCD	1. Given
2. $\overline{D E} \cong \overline{F B}$	2. Given
3. $\overline{A D} \cong$	3.

4. $\angle \mathrm{D} \cong$	4.
5.	5. SAS
6. $\angle 1 \cong \angle 2$	6.

14. Given: $A B C D$ is a parallelogram

Prove: $\triangle A E B \cong \triangle C E D$

Statement:	Reason:	
1. Parallelogram ABCD	1. Given	
2. $\overline{A B} \cong$	2.	
3. $\overline{A B} \\| \ldots$	3.	
4. $\angle \mathrm{CAB} \cong$	4. Alternate Interior Angles	
5. $\angle \mathrm{AEB} \cong \angle \mathrm{CED}$	5.	
6. $\triangle \mathrm{AEB} \cong \triangle \mathrm{CED}$	6.	

5. Given: H is the midpoint of $\mathrm{GJ}, \mathrm{GI} \cong \mathrm{IJ}$

Prove: $\triangle \mathrm{GHI} \cong \triangle \mathrm{JHI}$

6. Given: $\mathrm{LM} \cong \mathrm{PO}, \angle \mathrm{L} \cong \angle \mathrm{P}, \angle \mathrm{M}$ and $\angle \mathrm{O}$ are 90° Prove: $\triangle \mathrm{LMN} \cong \triangle \mathrm{PON}$

7. Given: $\angle \mathrm{B}$ and $\angle \mathrm{D}$ are $90^{\circ}, \mathrm{AE}$ bisects BD Prove: $\triangle A B C \cong \triangle E D C$

8. Given: M is the midpoint of GT , M is the midpoint of HS
Prove: $\triangle \mathrm{GMH} \cong \triangle T M S$

5.3 - Properties of Parallelograms

For \#1-2, use the diagram to solve for x and y if the figure is a parallelogram.

1. $\mathrm{PT}=2 x, \mathrm{QT}=y+12$, $\mathrm{TR}=x+2, \mathrm{TS}=7 y$
2. $\mathrm{PQ}=y, \mathrm{RS}=4 y-15$, $\mathrm{QR}=x+6, \mathrm{PS}=4 x-6$

3. Solve for x.

4. Solve for x.

5. Solve for x .

6. Solve for x.

7. Solve for x.

8. Find the measure of $\angle X U V$.

5.4 - Proofs with Parallelograms

Determine if each quadrilateral is a parallelogram. Explain your answer.
1.

2.

3.

4.

5.

6.

7. Solve for x .

9. Given $\mathrm{CJ}=5+3 x$ and $\mathrm{JE}=2 x+11$, find CE .

8. Find $m \angle R$.

10. Solve for x and y.

