Day 1: Angle Relationships and Vocab

$\angle 1$ and $\angle 2$ are complementary angles. $\angle 2$ and $\angle 3$ are supplementary angles. Given the measures of $\angle 1$ below, find $\mathrm{m} \angle 2$ and $\mathrm{m} \angle 3$.

1. $\mathrm{m} \angle 1=80^{\circ}$
2. $m \angle 1=33^{\circ}$
3. $m \angle 1=72^{\circ}$
$\mathrm{m} \angle 2=$ \qquad
4. $m \angle 1=7^{\circ}$
$\mathrm{m} \angle 2=$ \qquad $\mathrm{m} \angle 2=$ \qquad
$m \angle 3=$ \qquad
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 3=$ \qquad

Find the value of x. Then, find $m \angle A B C$ and $m \angle C B D$.
5.

$x=$ \qquad
$\mathrm{m} \angle \mathrm{ABC}=$ \qquad - $\mathrm{m} \angle \mathrm{CBD}=$ \qquad $-$
6.

$x=$ \qquad

Write an equation to find each value of x. Then, find the measure of each angle.
7.

8.

Equation: \qquad
$x=$ \qquad

$$
\mathrm{m} \angle \mathrm{ABC}=
$$

\qquad
$m \angle A B D=$ \qquad ${ }^{\circ}$
What relationship do these two angles have to each other?

Day 2: Transversals and Parallel Lines

I. Use Figure $A B C D$.

1. Name the three lines that make:

- $\angle 3$ and $\angle 4$ alternate interior angles

- $\quad \angle 1$ and $\angle 2$ alternate interior angles

2. Are there any corresponding angles that can be identified by the points and segments illustrated in the diagram?
II. Given: $L_{1} / / L_{2}$
3. $m \angle 3=2 x+40$
$m \angle 7=3 x+20$
Find $m \angle 3$.
4. $m \angle 5=x$
$m \angle 3=4 \mathrm{x}+21$
Find $m \angle 7$.
5. $m \angle 5=4 \mathrm{x}-10$
$m \angle 4=2 x-20$
Find $m \angle 6$ and $m \angle 8$.
6. $m \angle 4=3 x+40$
$m \angle 7=2 x$
Find $m \angle 1$.
7. $m \angle 4=3 x+40$
$m \angle 7=2 x$
Find $m \angle 1$.

Day 3: Triangle Sum Theorem and Isosceles Triangle Theorem (ITT)

I. Find the value of " x ".

1) $x=$ \qquad
2) $x=$ \qquad
3) $x=$ \qquad

4) $x=$ \qquad

5) $x=$ \qquad

6) $x=$ \qquad
7) $x=$ \qquad
8) $x=$ \qquad

9) $x=$ \qquad
10) $x=$ \qquad

11) $x=$

12) $x=$ \qquad

13) $x=$ \qquad

14) $x=$ \qquad
15) $x=$

16) $x=$ \qquad

17) $x=$ \qquad

18) $x=$ \qquad
19) $x=$

Find the value of the variable or question mark using the Isosceles Triangle Theorem
1.

$$
x=
$$

\qquad
3.

4.

$x=$ \qquad
$x=$ \qquad
5.

6.

$\angle \mathrm{F} \cong \angle \mathrm{G}$
$x=$ \qquad
,
2.

$x=$ \qquad
7.

$x=$ \qquad
$x=$ \qquad
8. $m \angle 2=7 x+4$

$x=$ \qquad

Day 5: CPCTC

I. Name the congruent triangles.
$1 . \triangle O D G \cong$

2. $\triangle C A R \cong$ \qquad

3. $\Delta L I N \cong$ \qquad
4. $\triangle B O X \cong$

II. Name the congruent triangle and the congruent parts..
7.

$\triangle F E I \cong$ \qquad
\qquad $\overline{F G} \cong$ \qquad
$\angle G \cong$ \qquad $\overline{G H} \cong$
$\angle H \cong$ \qquad $\overline{F H} \cong$

Use the congruency statement to fill in the corresponding congruent parts.
8. $\triangle L A P \cong \triangle H O T \quad \angle A P L \cong$ \qquad $\overline{L P} \cong$
$\angle P A L \cong$ \qquad
$\angle P L A \cong$ \qquad
$\overline{A P} \cong$ \qquad
$\overline{A L} \cong$ \qquad
9. $\triangle P Q R \cong \triangle M N R$. Find x .
10. $\triangle A B C \cong \triangle A D C$ Find y.

III. $\triangle P Q R \cong \triangle A B C$. Find thes, values of x and y .

1. $m \angle R=5 x+70, m \angle C=24 x-25, Q R=4 y+2, B C=x+y$
2. $P Q=5 x-31, Q R=-3 y-1, B C=x+1, A B=9-y$
3. $m \angle A=15 y-3, m \angle P=43-x, P Q=11-x, A B=3 y+1$
4. $\triangle X Y Z \cong \triangle M N O, m \angle X=x+10, m \angle M=y+20, m \angle Y=3 x$, and $m \angle N=x+3 y$. Find $m \angle X$ and $m \angle Y$.
IV. Indicate which triangles are congruent. Be sure to have the correspondence of the letters correct.
a. $\triangle E R C \cong$
Why is $\overline{R C} \cong \overline{R C}$?

b. E is the midpoint of $\overline{T P}$ $\triangle S P E \cong$ \qquad
c. $\triangle B O W \cong$ \qquad Why is $\angle 1 \cong \angle 2$?

V. Solve.
5. Given: $\triangle N E W \cong \triangle C A R$

$$
\begin{aligned}
& \mathrm{EN}=11 \\
& \mathrm{AR}=2 \mathrm{x}-4 \mathrm{y} \\
& \mathrm{NW}=\mathrm{x}+\mathrm{y} \\
& \mathrm{CA}=4 \mathrm{x}+\mathrm{y} \\
& \mathrm{EW}=10
\end{aligned}
$$

Draw the triangles, solve for x and y , and find CR.

Day 6: Congruence Postulates

I. If the triangles can be proven congruent, give the reason (SSS, SAS, ASA, or AAS). If there is not enough information to prove the triangles congruent, write "none."

5.

9.

6.

10.

3.

7.

11.

8.

12.

II. Determine whether you can conclude that another triangle is congruent to $\triangle \mathrm{ABC}$.

- If so, complete the congruence statement and give the reason (SSS, SAS, ASA, or AAS).
- If not, write "none."

1.

$\triangle A B C \cong \triangle$ by \qquad
2.

3.

$\triangle A B C \cong \Delta$
by \qquad
4.

6.

$\triangle A B C \cong \triangle$
by
\qquad
8.

$\triangle A B C \cong \Delta$ by
\qquad
$\triangle A B C \cong \triangle$ \qquad
by \qquad
5.

$\triangle A B C \cong \Delta$ \qquad
by \qquad
7.

$\triangle A B C \cong \Delta$
by \qquad
9.

$\triangle A B C \cong \triangle$ \qquad
by \qquad

What additional information is required in order to know that the triangles are congruent by the given reason?

1. ASA

5. SAS

2. SAS

4. ASA

8. SAS

Day 7: Congruence Proofs

Complete the following congruence proofs:

1. Given: $\overline{B D}$ bisects $\angle A B C$

$$
\overline{B A} \cong \overline{C B}
$$

Prove: $\measuredangle \mathrm{ADB} \cong \Varangle \mathrm{BDC} \triangle A B D \cong \triangle C B D$

2. Given: G is the midpoint of $\overline{F I}$

$$
\begin{array}{ll}
& \frac{\Varangle \mathrm{F} \cong \measuredangle \mathrm{l}}{} \mathrm{Prove}: \\
\overline{E F} \cong \overline{I H}
\end{array}
$$

3. Given: $\overline{E F} / / \overline{H I}$

G is the midpoint of $\overline{E H}$

Day 8: Congruence Proofs

Complete these proofs on a separate sheet of paper. A small guideline of the flowcharts are provided.

1. Given: $\overline{A B} \cong \overline{C D}$
$\overline{A B} \perp \overline{B C}$
$\overline{C D} \perp \overline{B C}$
$\overline{A E} \cong \overline{C D}$

Prove: $\measuredangle A \cong \measuredangle D$

2. Given: $\overline{G K} \cong \overline{H L}$
$\overline{G L} \cong \overline{H K}$
Prove: $\measuredangle \mathrm{K} \cong \Varangle \mathrm{L}$

3. Given: $\overline{A C} \cong \overline{B C}$
$\overline{A E} \cong \overline{B D}$
Prove: $\overline{C D} \cong \overline{C E}$

4. Given: $<\mathrm{F}$ and $<\mathrm{H}$ are right angles

G is the midpoint of $\overline{F H}$

$$
\overline{E G} \cong \overline{L G}
$$

Prove: $\Varangle \mathrm{E} \cong \Varangle \mathrm{L}$
**HINT: Think about which shortcut applies to right triangles!

