\qquad

TOPICS:

I can state and use the Triangle Sum Theorem and the Exterior Angle Theorem.

1. The sum of the measures of the angles of a triangle is \qquad .
2. The exterior angle of a triangle is equal to \qquad of the \qquad of the triangle.

Solve for x .

13. Solve for

x.

- I can state and use the Isosceles Triangle Theorem.

3. An isosceles triangle has at least two sides that are \qquad
4. Isosceles Triangle Theorem (ITT): If two \qquad of a triangle are congruent, then
\qquad are congruent.
5. Converse of ITT: If two \qquad of a triangle are congruent, then
\qquad are congruent.
a. Find x .

b. Find x .

I can identify angle relationships within a transversal and use them to solve problems.
Use the diagram to answer 3-4.
6. Name the type of each given angle pair.
a. $\angle 3$ and $\angle 5$
b. $\quad \angle 1$ and $\angle 7$
c. $\quad \angle 4$ and $\angle 8$
d. $\angle 8$ and $\angle 6$
e. $\angle 4$ and $\angle 3$

7. Given: $\quad a / / b$ and $m \angle 5=132^{\circ}$. Find the measure of each of the remaining angles.
$m \angle 1=$ \qquad , $m \angle 2=$ \qquad , $m \angle 3=$ \qquad , $m \angle 4=$ \qquad ,
$m \angle 6=$ \qquad , $m \angle 7=$ \qquad , $m \angle 8=$ \qquad
8. If $m \angle 1=(2 x+4)^{\circ}$ and $m \angle 7=(3 x-7)^{\circ}$, find $m \angle 6$.

\square I can state and use CPCTC.

9. CPCTC - If two triangles are congruent, then their corresponding parts (sides and angles) are
\qquad .

- Knowing that corresponding parts are congruent, you can set up and solve equations:
a. $\triangle A B C \cong \Delta P Q R, \mathrm{AB}=\mathrm{x}+\mathrm{y}, \quad \mathrm{PQ}=2 \mathrm{x}+4, \quad \mathrm{AC}=4 \mathrm{y}-13, \quad \mathrm{PR}=2 \mathrm{y}+\mathrm{x} . \quad$ Find PQ.
b. $\triangle L M N \cong \triangle X Y Z, \quad m \angle L=x+50, m \angle N=40, m \angle Y=-2 x+10$. Find $m \angle X$.

I I can state and recognize the Congruence Postulates

10. The triangle congruence postulates are: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. The false postulates are: \qquad ,

- You can identify congruent and noncongruent triangles using the congruence shortcuts.
- If congruent, you can write a congruence statement.
- Each " A " is a pair of congruent Angles, each " S " is a pair of congruent Sides
- To use HL, use must first establish there are right triangles. The "H" represents the hypotenuses and the "L" represents one of the legs from each triangle.
- Don't forget that triangles can overlap and share angles or sides.
- Vertical angles are congruent.

12. . For each of the following, give the reason for triangle congruence. Then, write a congruence statement.

a. $\triangle A B C \cong$

\qquad by \qquad b. $\triangle B A C \cong$ \qquad by \qquad

c. $\triangle C A B \cong$ \qquad by \qquad d. $\triangle C B A \cong$ \qquad by \qquad

e. $\triangle A B C \cong$ \qquad by \qquad
13. The primary focus of this unit was writing flow proofs to prove geometric relationships. Be sure to study the proofs you have written throughout the unit.
a. Given: $\angle \mathrm{E} \cong \angle \mathrm{G}$, HF bisects $\angle E H G$ Prove: $\mathrm{HE} \cong \mathrm{HG}$
b. Given: $R S \cong T S$, SQ \perp RT
Prove: $\triangle R S Q \cong \triangle T S Q$
c. Given: $\angle \mathrm{KMQ} \cong \angle \mathrm{KNP}$, $M K \cong N K$
Prove: $\triangle M Q K \cong \triangle N P K$

