Final Exam Review Sheet

Unit 1: Functions and Inverses

3 Methods for Solving Systems:

1. Substitution:

- Solve one equation for a variable. (Y= or X=)
- Substitute that equation into your other equation and solve.
- Plug your answer into either equation to solve for the remaining variable.
- 2. Elimination:
 - Make sure the equations are lined up with common variables and constants.
 - If needed multiply an entire equation so that x or y has the same coefficient with opposite signs.
 - Add straight down and solve.
 - Plug answer into either equation and solve for the remaining variable.

3. Graphing:

- Isolate for y in each equation.
- Plug into Y=
- Where do the equations intersect?
- Calculator Steps (2nd \rightarrow Trace \rightarrow 5) Go to intersection and hit enter 2 times.

Three Types of Solutions:

- Ordered Pair(s) Where do the functions intersect?
- Infinitely Many You have the same equation. Algebraically you would get a true statement. (Example: 0=0, 4=4, 2=2)
- No Solution- The equations never intersect. Algebraically you would get a false statement. (Example: 3=6, -1= 5, 0=9)

Systems of Inequalities: We find the solutions to our system when our shading overlaps.

Lines:

- > or < Dotted Line
- \geq or \leq Solid Line

Shading:

- Y > or $Y \ge$ Shade Above
- $Y < \text{ or } Y \le$ Shade Below

Absolute Value Functions:

- Absolute Value Bars in your Calculator (2nd \rightarrow 0 \rightarrow Enter)
- 1. Isolate the absolute value
- 2. Drop the absolute value symbol and set up two equations
 - One positive, one negative
- 3. Solve both equations

Inverses: Equations that undo one another and therefore "swap" domain and range. X and Y "flip" or change positions.

- 1. Change "f(x)" notation to "y"
- 2. Switch the x and y variables in the function.
- 3. Solve the equation for y.
- 4. Replace y with $f^{-1}(x)$

Function Operations:

The value in parenthesis is what we are plugging into the equation. f(2) plug 2 into the equation.

- Addition: (f + g) = f(x) + g(x)
- Subtraction: (f g) = f(x) g(x)

- Multiplication: $(f \cdot g) = f(x) \cdot g(x)$
- Compositions: $(f \circ g) = f(g(x))$

Unit 2: Exponential and Logarithmic Functions

Properties of Logs:

- Move from Log to Exponential Form and vise versa to help us solve for variables
 - If $y = b^x$ then $log_b y = x$
- Logs have base 10
- Natural logs have base e (2.718)
- $log_bmn = log_bm + log_bn$
- $log_b \frac{m}{n} = log_b m log_b n$
- $log_b m^p = plog_b m$

Solving Exponential Equations:

- 1. Isolate the exponential term
- 2. Take the natural log of both sides
- 3. Use the exponent property to move it in front of the natural log
- 4. Solve for the variable!

Graphing Logarithmic and Exponential Functions:

- Asymptote: A line that we approach, but never cross. Boundary line.
 - Exponential: Horizontal Asymptote being added/ subtracted at end of equation
 - Logarithm: Vertical Asymptote is the number inside with x, set =0 then solve.

Exponential Functions:

- $a = pb^t$
- p = initial amount
- b = growth/decay factor
 - \circ Growth \rightarrow adding 1 (b >1)
 - Decary \rightarrow subtracting from 1 (0 < b < 1)
- t = time period

Compound Interest:

- Compounded Over Time Period: $A = P(1 + \frac{r}{n})^{nt}$
- Compounded Continuously: $A = P e^{rt}$
- Variables:
 - A: Final amount
 - P: Principle (initial amount)
 - \circ r: interest rate \rightarrow as a decimal
 - n: number of times compounded in on year
 - t: time in years
- Compounding and n values:
 - n = 1 Compounded Yearly
 - n = 2 Compounded Semi Annually
 - n = 4 Compounded Quarterly
 - n = 12 Compounded Monthly

Unit 3: Modeling with Geometry

Nets: Flattened 3D shape

Cross Sections: the surface that is created by cutting a 3D solid with a 2D plane.

Surface Area: If we were to cover a 3D shape in wrapping paper. (The sum of all side areas.)

- Helpful Area Formulas
 - Circle: $A = \pi r^2$
 - Triangle: $A = \frac{1}{2}bh$
 - Rectangle: A = bh
 - Trapezoid: $A = \frac{1}{2}(b_1 + b_2)h$
 - SA of a Sphere = $4\pi r^2$
 - SA of a Cone $= \pi r^2 + \pi r l \rightarrow$ where I is the slant height

Volume: If we were to fill a 3D shape with sand.

- Prisms and Cylinders: V= Area of the base* Height
 - Pyramids and Cones: V= $\frac{1}{3}$ Area of the base* Height
 - Volume of a Sphere = $\frac{4}{3}\pi r^3$

Unit 4: Polynomials:

Long Division:

- 1. Divide 2. Multiply 3. Subtract 4. Bring Down 5. Repeat!
- Before you begin, make sure you are in standard form (highest power \rightarrow lowest power)
- Make sure missing terms are written with a zero coefficient.

Synthetic Division:

- 1. Write coefficients of the dividend (what you are dividing) [including zero placeholder if needed.]
- 2. Use opposite sign of number is the divisor (what you are dividing by)
- 3. Bring down the first coefficient.
- 4. Multiply the divisor with the coefficient, place it above the line in the next column.
- 5. Add; Repeat.
- 6. Last number is your remainder, as you move to the left step up a degree for each term.

Remainder Theorem: Plug the opposite value of the divisor into the polynomial to find the remainder. If it is zero, it is a factor. If it is not zeros, then the remainder is the number remaining over the divisor! Key Features/Vocabulary:

- Zero: Referred to as "root" or "Solution" or "x-intercept."
- Term: Single number or variable
 - 1 Term: Monomial
 - 2 Terms: Binomial
 - 3 Terms: Trinomial
 - 4 Terms: Polynomial
- Degree: Highest exponent of a polynomial
 - Degree 0: Constant
 - Degree 1: Linear
 - Degree 2: Quadratic
 - Degree 3: Cubic
 - Degree 4: Quartic
 - Degree >4: Polynomial
 - Multiplicity: How often a zero occurs. Can tell my factored form with exponent or looking at graph.
 - $\circ \quad \text{Multiplicity 1: Single Root} \rightarrow \text{Crosses through x-axis}$
 - $\circ \quad \text{Multiplicity 2: Double Root} \rightarrow \text{Bounced off x-axis}$
 - Multiplicity 3: Triple Root --? Crosses x-axis, but flattens/sways
 - $\circ \quad \mathsf{Even} \to \mathsf{Bounced} \qquad \mathsf{Odd} \to \mathsf{Crosses}$

- Extrema: High and low point on a graph
 - Absolute Extrema: the highest or lowest points on a function
 - Relative Extrema: points higher or lower than nearby points
- Increasing/Decreasing: looking at x-values. Look at slope!
- Positive/Negative: looking at y-values. Are we above or below x-axis?

End Behavior: What the graph does at each end. You can look at leading coefficient and degree.

- Positive/Even (As $x \to -\infty$, $y \to \infty$, As $x \to \infty$, $y \to \infty$)
- Negative/Even (As $x \to -\infty$, $y \to -\infty$, As $x \to -$, $y \to -\infty$)
- Positive/Odd (As $x \to -\infty$, $y \to -\infty$, As $x \to \infty$, $y \to \infty$)
- Negative/Odd(As $x \rightarrow -\infty$, $y \rightarrow \infty$, As $x \rightarrow \infty$, $y \rightarrow -\infty$)
- Even points in same direction; Odd points in different directions

Solving Polynomials:

- Graph polynomial. Look for any visible zeros (2nd \rightarrow Trace \rightarrow 2. Left \rightarrow Right \rightarrow Enter)
- Factor or use Quadratic Formula if needed. $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

Unit 5: Reasoning with Geometry

Geometric Properties:

- Reflexive Properties: Share the same side, or angle.
- Vertical Angles: opposite angles formed by intersecting lines (Congruent)
- Linear Pair: adjacent angles that form a line (Supplementary)
- Relationships formed by parallel lines and transversals
 - Corresponding Angles: Same side, same position (Congruent)
 - Alternate Interior Angles: opposite side of transversal, inside parallel lines (Congruent)
 - Alternate Exterior Angles: opposite side of transversal, outside parallel lines (Congruent)
 - Consecutive Interior Angles: same side of transversal, inside parallel lines (Supplementary)
 - Consecutive Exterior Angles: same side of transversal, outside parallel lines (Supplementary)

Triangle Congruence Postulates:

- Angle-Side-Angle
- Side-Angle-Side
- Side-Side-Side
- Angle-Angle-Side
- Hypotenuse-Leg
- No AAA (roadside assistance) or SSA (Donkeys!)

Properties of Parallelograms:

- Opposite sides are parallel
- Opposite sides are congruent
- Consecutive angles are supplementary
- If one angle is right, all angles are right
- Diagonals bisect each other
- Diagonals create two congruent triangles

Properties of Quadrilaterals:

- Rectangles
 - All properties of parallelograms
 - 4 right angles
 - Diagonals are congruent

- Rhombus
 - All properties of parallelograms
 - Diagonals bisect angles
 - Diagonals are perpendicular
- Square:
 - All properties of parallelograms
 - All properties of a rectangle
 - All properties of a rhombus
- Isosceles Trapezoid:
 - One set of parallel sides
 - Base angles are congruent
 - Diagonals are congruent
 - Opposite angles are supplementary
- Trapezoid Midsegment: Midsegment is half the sum of the lengths of the bases.
- Kite:
 - Diagonals are perpendicular
 - Diagonals bisect opposite angles
 - One pair of opposite angles are congruent
 - One diagonal bisects the other.

Unit 6: Circles

Angles:

- Inscribed Angles: Angle formed by two chords, half the arc measure
- Central Angles: Angles formed by two radii, equal to arc measure uation of a Circle:

Equation of a Circle:

- $(x-h)^2 + (y-k)^2 = r^2$
- Center: (h,k)
- Radius: r

Arc Length and Area of a Sector:

Arc Length: $s = \frac{\theta \pi r}{180}$, θ is the angle measure

Area of a Sector: $A = \frac{\theta \pi r^2}{360}$

Tangents:

- Tangent line intersects a circle at exactly one point.
- When a tangent line intersects with a radius, it forms a right angle
- When two tangent lines share a common endpoint outside the circle, the segments are congruent.

Angles Theorems:

Segment Theorems:

Unit 7: Rationals

Simplifying Rationals:

- Factor the numerator and denominator completely.
- Cross out any terms that are in both the numerator and denominator.

Multiplying Rationals:

- Factor the numerator and denominator completely.
- "Smush" the two rationals together to form one large fraction. Simplify!

Dividing Rationals:

- KEEP-CHANGE-FLIP! Keep the original rational, change from division to multiplication, flip the last rational!
- Multiply! Simplify!
- Adding/Subtracting Rationals:
 - Make common denominators!
 - If denominators are not common, factor the denominator completely. Find which factors each rational is missing.
 - Multiply each rational by that factor in both the numerator and the denominator.
 - Add or subtract across the top, keep denominators the same!
 - Be careful with subtracting. Make sure you are subtracting each term! (Distribute your negative!)

Solving Rationals:

- Simplify so that we have one rationa on each side of the equal sign.
- Cross Multiply! Solve for you variable!

• Don't forget to check your solutions! If it does not satisfy the statement we call this extraneous! Graphing Key Features:

- Holes: Factors that cross out when simplifying. (Set equal to zero and solve!)
- Vertical Asymptotes: Factors remaining in the denominator after simplifying! (Set equal to zero and solve!)
- Horizontal Asymptotes: BOBO BOTN EATS DC
 - \circ BOBO: Degree is bigger in the denominator (bottom) Y = 0
 - BOTN: Degree is bigger in the numerator (top) NONE, no HA.
 - EATS DC: Degrees are equal, divide coefficients.

Unit 8: Trigonometry

- Angles
 - Sketching in Standard Position:
 - Start along x-axis axis: Mark terminal side where the angle ends.

- Draw path of the angle. Is it positive? Move up! Negative? Move Down! If it is greater than 360, make sure you include the number of rotations (using your spirals!)
- Converting:
 - Angles to Radians? Divide by 180, Slap π on top, in numerator!
 - Radians to Degrees? Plug 180 in place of π , simplify!
- Right Triangle Trig
 - SOH CAH TOA!
 - Make sure you are in Degree Mode
 - Solving for angles? Need Inverse (2nd \rightarrow Trig Function)
 - Reciprocals:
 - Sine (SIN) \rightarrow Cosecant (CSC)
 - Cosine (COS) \rightarrow Secant (SEC)
 - Tangent (TAN) \rightarrow Cotangent (COT)
- Looking at our Unit Circle:
 - \circ (X, Y) → (Cosine, Sine) Think Alphabetical order!
 - Tangent $\rightarrow \frac{Sine}{Cosine}$
- Tips and Tricks to filling out Unit Circle
 - Start with 4 main points along axes.
 - Filling in Angles: Big Gap (+30); Small Gap (+15)
 - Convert to Radians
 - Left Hand Trick: Put the numbers in the following form: $\frac{\sqrt{3}}{2}$
 - Color code: Think about quadrants to get correct signs!
- Graphing Key Features:
 - Sine: Starts at midline. If it moves up, it is positive. If it goes down, it is negative.
 - Cosine: Starts above or below the midline. If it is above the midline, then it is positive, if it is below the midline, it is negative.
 - Amplitude: $A = \frac{1}{2}(Maximum Minimum)$
 - Period = $\frac{2\pi}{b}$, When looking at a graph, when have we finished one cycle/patten?
 - Frequency = $\frac{b}{2\pi}$, reciprocal of period. When looking at the graph, how many cycles/patterns in 2π
 - Vertical Shift (k): Where is the midline in relation to the x-axis
 - Writing an equation Generic From:
 - y= a sin(bx) +k

Unit 9: Statistics

Collecting Data:

- Surveys
- Observational Studies
- Experiments

Types of Sampling:

- Simple Random Sample: All in population have same probability of being selected.
- Stratified Random Sample: Population is divided into subgroups, then each subgroup has individuals that are randomly selected.
- Systematic Random Sample: Every nth person is chosen to participate.
- Convenience Sampling: The easiest group to obtain (the first 10 visitors)
- Cluster Sample: Population is divided into groups, then a random clusters are included in sample.

• Voluntary Response: Individuals choose to participate.

Types of Bias:

- Question Wording Bias: When the wording of a question affects the way someone responds.
- Undercoverage Bias: When the sample is not representative of the population
- Response Bias: When respondents lie or misrepresent themselves
- Nonresponse Bias: When an individual is chosen to participate, but refuses.
- Voluntary Response Bias: Those who choose to participate usually have extreme feelings in one direction.

Parameter vs. Statistic:

- Parameter: a value that represents a population.
- Statistic: a value based on a sample that is used to estimate a parameter.

Confidence Intervals:

- We cannot guarantee that a sample represents the population, so we use Margin of Error (MOE) to create an interval in which we feel confident the parameter will lie.
- Margin of Error: $\frac{1}{\sqrt{n}}$, where n is the sample size.

Simulations:

- A way to model random events so that simulated outcomes closely match real world outcomes.
 - Math \rightarrow PRB \rightarrow randInt()