Honors Math 2

I I can identify similar triangles and write similarity statements

If the triangles in 1-3 can be proved similar, complete the similarity statement and tell which theorem or postulate you would use. If they cannot be proved similar then write "None."

1. $\triangle A B C \backsim \triangle$ \qquad by \qquad 2. $\triangle A B C \cos \triangle$ \qquad by \qquad

2. $\triangle X Y Z \cos$ \qquad by \qquad 4. $\Delta Y V Z \cos \Delta \quad$ by \qquad

I I can use what I know about similarity to find missing side lengths and variables.
5. $\triangle B A C \backsim \triangle D E C$ (Use the image to the right).
a. What is the scale factor of $\triangle B A C$ to $\triangle D E C$? (leave in reduced fraction form): \qquad
b. Find AC. \qquad
c. Find DE. \qquad

6. $x=$ \qquad

7. $x=$ \qquad

I I can define the midsegment and use it to solve for side lengths or variables.
8. Midsegment of a Triangle:
a. The midsegment of a triangle joins the \qquad of two sides of a triangle.
b. The midsegment is \qquad to the third side and is \qquad the length of the third side.
c. Corresponding angles in the two similar triangles created by a midsegment are
\qquad —.
d. Use the image on the right to solve for x .
\square I can identify angle relationships within a transversal and use them to solve problems.

Use the diagram to answer 13-14.
9. If $m \angle 3=(2 x+24)^{\circ}$ and $m \angle 6=(6 x+20)^{\circ}$, find $m \angle 8$.

10. What kinds of angles in a transversal are congruent?

What kinds are supplementary?

Exterior Angle Theorem
11. Solve for $\mathrm{x} . \mathrm{x}=$ \qquad

12. Solve for $\mathrm{x} . \mathrm{x}=$ \qquad

I can prove triangle similarity and use triangle similarity to prove similar/congruent figures.
*Refer to the Triangle Similarity Proofs notes and homework for more examples.
13. Given: $\angle J \cong \angle N$

Prove: $\frac{J O}{N O}=\frac{K O}{M O}$

14. Given: $\angle C N H$ and $\angle C A M$ are 90°

Prove: $\frac{A M}{N H}=\frac{C M}{C H}$

