Name:

I can identify similar triangles and write similarity statements

If the triangles in 1 – 3 can be proved similar, complete the similarity statement and tell which theorem or postulate you would use. If they cannot be proved similar then write "None." 1. $\Delta ABC \simeq \Delta$ _____ by ____ 2. $\Delta ABC \simeq \Delta$ _____ by ____

3. $\Delta XYZ \simeq \Delta$ _____ by ____

□ I can use what I know about similarity to find missing side lengths and variables.

- 5. $\triangle BAC \circ \triangle DEC$ (Use the image to the right).
 - a. What is the scale factor of $\triangle BAC$ to $\triangle DEC$? (leave in reduced fraction form):_____
 - b. Find AC. _____
 - c. Find DE.

I can define the midsegment and use it to solve for side lengths or variables.

- 8. Midsegment of a Triangle:
 - a. The midsegment of a triangle joins the ______ of two sides of a triangle.
 - b. The midsegment is ______ to the third side and is ______ the length of the third side.
 - c. Corresponding angles in the two similar triangles created by a midsegment are

- d. Use the image on the right to solve for x.
- **I** can identify angle relationships within a transversal and use them to

solve problems.

Use the diagram to answer 13 – 14.

9. If
$$m \angle 3 = (2x + 24)^\circ$$
 and $m \angle 6 = (6x + 20)^\circ$, find $m \angle 8$.

them to

$$\begin{array}{c}
c\\
x+19\\
x+29\\
\hline
1/2\\
\hline
4/3\\
\hline
5/6\\
\hline
8/7\\
\end{array}$$

10. What kinds of angles in a transversal are congruent? What kinds are supplementary?

D Exterior Angle Theorem

14. Given: $\angle CNH$ and $\angle CAM$ are 90 °

60°

2x°

□ I can prove triangle similarity and use triangle similarity to prove similar/congruent figures. *Refer to the Triangle Similarity Proofs notes and homework for more examples.

13. Given: $\angle J \cong \angle N$ Prove: $\frac{JO}{NO} = \frac{KO}{MO}$

Prove: $\frac{AM}{NH} = \frac{CM}{CH}$

