Fundamental Geometry and Similarity

Practice Problems

1) What is the value of a?

a) $a=40^{\circ}$
b) $a=80^{\circ}$
c) $a=90^{\circ}$
d) $a=140^{\circ}$

2) What is the value

a) $x=50^{\circ}$
b) $x=80^{\circ}$
c) $x=100^{\circ}$
d) $x=130^{\circ}$

What is the value

If $\triangle C E D \sim \triangle K H G \ldots$

a) $x=90^{\circ}$
b) $x=64^{\circ}$
c) $x=26^{\circ}$
d) $x=116^{\circ}$

4.) What is the value

a) $x=3$
b) $x=6$
c) $x=12$
d) $x=30$

5) Are They Simillar?

a) The triangles are similar by SSS
b) The triangles are similar by SAS
c) The triangles are similar by AA
d) There is not enough information to determine

6) Are They Similar?

a) The triangles are similar by SSS
b) The triangles are similar by SAS
c) The triangles are similar by AA
d) There is not enough information to determine

7) Are They Simillar?

a) The triangles are similar by SSS
b) The triangles are similar by SAS
c) The triangles are similar by AA
d) There is not enough information to determine

8) If They Were Simillar....

What further information do you need in order to determine the triangles are similar by SAS?

a) $\frac{20}{15}=\frac{M T}{K B}$
b) $m \angle T=m \angle B$
c) $\frac{20}{15}=\frac{A T}{H B}$
d) $m \angle M=m \angle K$

In the figure below, $\angle 1=4 x^{\circ}$ and $\angle 7=76^{\circ}$

a) $x=18$
b) $x=19$
c) $x=26$
d) $x=100$

10) What is m 22 ?

> In the figure below,
> $\angle 3=(4 x+17)^{\circ}$ and $\angle 6=(6 x-13)^{\circ}$

a) $m \angle 2=15^{\circ}$
b) $m \angle 2=60^{\circ}$
c) $m \angle 2=77^{\circ}$
d) $m \angle 2=180^{\circ}$

11) Which proof is correct?

> Given: $A B=8, B C=12$,
> $A C=16, D E=6, E F=9, D F=12$

Sides are
proportional
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$

$$
\begin{aligned}
& \text { Given: } A B=8, B C=12 \\
& A C=16, D E=6, E F=9, D F=12
\end{aligned}
$$

Sides are proportional

$$
\frac{A B}{E F}=\frac{B C}{D E}=\frac{C A}{F D}
$$

SSS
$\triangle A B C \sim \triangle D E F$

12) Complete the proof!

Prove that $\triangle A B E \sim \triangle A C D$.

